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 Blasting is a fundamental technique in open-pit mining, used to break rock and ore. 
Its effectiveness and the degree of fragmentation significantly affect the efficiency of 
subsequent processes and the overall mine productivity. However, a major concern 
is the dangerous impact of flyrock, which poses serious safety risks to personnel and 
equipment in the vicinity, potentially leading to fatal accidents. This paper presents 
an advanced machine learning model, named ES-ANN, which combines an Artificial 
Neural Network (ANN) with Evolution Strategies (ES) to predict flyrock distance in 
open-pit mines with high accuracy. The ANN model is used to forecast flyrock 
distances, while the ES technique optimizes the model's weights, enhancing 
prediction accuracy. To evaluate the improvement of the proposed ES-ANN model, 
another optimization model based on the Evolutionary Programming (EP) 
optimization algorithm and ANN (abbreviated as EP-ANN), and a standalone ANN 
model were developed and compared based on the same datasets. Blasting data 
from the Ta Phoi copper mine (Lao Cai) was utilized for model training and 
validation. The results indicated that the ES-ANN model achieved the highest 
performance with an MAE of 2.095, RMSE of 2.711, and R2 of 0.952 on the testing 
dataset (95.2% accuracy) in predicting flyrock distance. Meanwhile, the EP-ANN 
and standalone ANN models only provided MAE of 5.512 and 7.300, RMSE of 6.692 
and 8.938, and R2 of 0.708 and 0.479, respectively. Compared to the EP and 
traditional methods, the ES-ANN model offered superior accuracy and reliability, 
making it an effective tool for forecasting and managing flyrock hazards in open-pit 
mining, thus enhancing operational safety. 
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1. Introduction 

Open-pit mines commonly use the 
synchronized drill-and-blast method to break 
rock and ore, which is essential for subsequent 
processes such as excavation, transportation, 
waste disposal, and crushing. This method is 
necessary due to the high hardness of the rock and 
ore typically found in open-pit mines. While the 
effectiveness of blasting for rock fragmentation in 
open-pit mines is undeniable, it also has 
significant environmental impacts. These include 
blast-induced vibrations, air shock waves, flyrock, 
ground shocks, and air pollution from dust and 
toxic gases (Bach et al., 2015; Thang et al., 2015). 
Among these, flyrock is particularly dangerous, 
posing serious risks to the safety of nearby 
personnel and equipment, with the potential to 
cause fatalities. 

In recent years, several mining operations 
have failed to control flyrock during blasting, 
leading to "rock showers" that have fallen on the 
homes and properties of local residents. This has 
endangered the safety of those living in the area 
and caused damage to buildings, farmland, and 

other structures (Dong, 2024; Luat, 2024; Nien, 
2024; Phong, 2024; Plus, 2024) (Figure 1). 

In practice, the Vietnam Ministry of Industry 
and Trade's regulation QCVN 01:2019/BCT 
(Trade, 2019) sets the safe flyrock distance at 300 
meters for people and 200 meters for equipment 
during blasting with large-diameter drill holes. 
For mines with significant elevation differences, 
the required safe distance increases by 1.5 times. 
However, in many cases, blasting operations have 
resulted in flyrock distances far exceeding these 
safety limits, making it impossible to control or 
predict the flyrock range, as previously 
mentioned. 

To address this issue, some researchers have 
proposed empirical formulas to predict flyrock 
distance caused by blasting, but their accuracy 
remains limited (Ghasemi et al., 2012; Jahed  
Armaghani et al., 2016). 

With the advancement of science and 
technology in the era of Industry 4.0, researchers 
globally have shifted toward more sophisticated 
models utilizing machine learning and artificial 
intelligence. These models aim to better 
understand the relationship between flyrock and 
blasting parameters, as well as the physical and

Figure 1. Evidence of Flyrock Incidents from Blasting at Open-Pit Quarries (Vietnam) (Law, 2024; 
Plus, 2024). 
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mechanical properties of the rock, in order to 
improve prediction accuracy. Several machine 
learning models have been developed worldwide 
to predict flyrock distance. One such model is the 
Outlier Robust Extreme Learning Machine 
(ORELM), which was designed to reduce the 
impact of outliers, thereby providing more stable 
and accurate predictions (Lu et al., 2020). 
Additionally, Zhang et al. (2024) developed a 
Stacked Multiple Kernel Support Vector Machine 
to predict flyrock distances at the Sugun copper 
mine in Iran, achieving an accuracy of 
approximately 99%. Another model worth noting 
is the Monte Carlo-based regression model, 
developed by Armaghani et al. (2016), which was 
used to predict flyrock distance from blasting at 
the Ulu Tiram quarry in Malaysia, showing an 
accuracy of 85.5%. Li et al. (2023) also developed 
a hybrid model combining Harris Hawks 
Optimization and Multi-strategies-based Support 
Vector Regression to predict flyrock distances in 
open-pit mines, with an accuracy of 96.6%. 

While these studies demonstrate the high 
reliability of modern machine learning models in 
predicting flyrock distances, researchers have 
also cautioned that the accuracy of these models 
needs to be carefully reviewed or further tested 
when applied to different regions. Variations in 
data characteristics (such as geological 
conditions, geophysical properties, and rock 
mechanics) mean that results from one area 
cannot be generalized to others. As such, these 
models cannot be directly applied in Vietnam 
without careful research and adaptation. 
Therefore, in this study, the authors developed a 
new machine learning model based on Evolution 
Strategies Optimization and an Artificial Neural 
Network (ANN), abbreviated as ES-ANN, and 
tested its feasibility with appropriate parameters 
at the Ta Phoi copper mine in Lao Cai, Vietnam. 
Another optimization model based on the 
Evolutionary Programming (EP) optimization 
algorithm and ANN, namely EP-ANN, and a 
standalone ANN model are also developed to 
compare with the proposed ES-ANN model in 
predicting blast-induced flyrock based on the 
same datasets. The research methodology and 
results are discussed in the following sections of 
this paper. 

2. Methodology 

2.1. Multi-layer perceptron neural network 

The MLP (Multi-Layer Perceptron) neural 
network is a type of neural network with a multi-
layer structure. It consists of at least three main 
layers: the input layer, the hidden layer (which 
can have multiple hidden layers), and the output 
layer. MLP is one of the most commonly used 
neural network types and is widely applied to 
classification and regression tasks (Khashei et al., 
2012; Desai & Shah, 2021; Uncuoglu et al., 2022; 
Xu et al., 2022; Zhang et al., 2023). In this study, 
we use an MLP neural network to predict flyrock 
distance caused by blasting in open-pit mines, 
which is a regression problem. 

The input layer of the MLP neural network is 
responsible for receiving the initial data and 
passing this information into the network. The 
number of neurons in the input layer corresponds 
to the number of features (input variables) in the 
data. 

In the hidden layer, the neurons apply 
nonlinear transformations (typically using 
activation functions such as ReLU, Sigmoid, or 
Tanh) to learn complex patterns within the data, 
discovering relationships and rules. 

Finally, the MLP provides the final prediction 
at the output layer, where the number of neurons 
corresponds to the predicted flyrock distance 
caused by blasting in open-pit mines. Figure 2 
illustrates the structure of the MLP model used to 
predict flyrock distance from blasting in open-pit 
mines. 

The operating principle of an MLP neural 
network is as follows: the MLP learns to transform 
data by updating its weights through the process 
of backpropagation. This algorithm involves both 
forward and backward propagation (Naskath et 
al., 2023). 

- Forward propagation: Data is passed 
through each layer of the network, from the input 
layer to the output layer. At each layer, the input is 
multiplied by the weights, a bias is added, and the 
result is passed through an activation function to 
produce the layer's output. 

- Backward propagation: After the network 
makes a prediction, a loss function is used to 
calculate the error between the predicted values 
and the actual values. This error is then 
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propagated backward through the network to 
update the weights using optimization algorithms 
such as gradient descent. This process allows the 
network to self-correct and improve accuracy by 
minimizing the error. 

2.2. Optimization algorithms based on 
evolutionary techniques 

2.2.1. Evolutionary programming (EP) 

Evolutionary Programming (EP) is an 
optimization method based on the principles of 
natural evolution and is part of the broader family 
of Evolutionary Algorithms (EAs). It was 
developed by Fogel (1962) in the 1960s with the 
original aim of simulating biological evolution to 
solve complex problems (Fogel, 1964). 

The key features of the Evolutionary 
Programming algorithm include: 

1. Simulating the evolutionary process: EP 
simulates evolution by generating and evolving a 
population of potential solutions (individuals) to 
a given problem. These individuals are 
represented as numerical strings or other suitable 
data structures for solving the problem. 

2. No crossover operation: Unlike Genetic 
Algorithms (GA), EP does not use crossover 

between individuals. Instead, it focuses on 
mutation to introduce diversity within the 
population. 

3. Evaluation and selection: Each individual in 
the population is evaluated based on a fitness 
function, which reflects how well that solution 
meets the problem's objectives. The better-
performing individuals have a higher chance of 
surviving and reproducing in the next generation. 

4. Unconstrained optimization: EP is well-
suited for unconstrained optimization problems 
and can be easily applied to complex or 
discontinuous objective functions. 

The basic steps of the Evolutionary 
Programming algorithm are as follows: 

- Step 1: Initialization: Generate a random 
population of individuals representing potential 
solutions to the problem. 

- Step 2: Mutation: Apply mutations to the 
individuals to create new solutions. 

- Step 3: Evaluation: Measure the fitness of 
each individual based on the objective function. 

- Step 4: Selection: Choose the best 
individuals to proceed to the next generation. 

EP emphasizes exploration of the search 
space through mutation and is particularly 

Figure 2. MLP model structure for predicting flyrock distance from blasting in open-pit mines. 
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effective for problems with large or complex 
solution spaces. 

2.2.2. Evolutionary strategies (ES) 

Evolution Strategies (ES) is an optimization 
method based on the principles of natural 
evolution, similar to other evolutionary 
algorithms (EA) such as Genetic Algorithm (GA) 
and Evolutionary Programming (EP). ES was 
developed by Rudolph (2000) to address 
optimization problems by simulating biological 
processes. 

The key features of Evolution Strategies (ES) 
include individual representation, mutation, 
recombination, selection, and self-adaptation of 
strategy parameters (Hansen et al., 2015). In ES, 
individuals are typically represented as real-
valued vectors, where each value (gene) 
corresponds to a parameter to be optimized. Each 
individual consists of two components: 

- Genotype: The solution values. 
- Strategy parameters: Parameters such as 

the standard deviation (σ) used during mutation. 
Mutation is the primary mechanism in ES. 

Unlike GA, which focuses on recombination, ES 
emphasizes small changes in individuals through 
random mutation (Back, 1996). Mutation usually 
involves adding a randomly generated value from 
a normal distribution to both the solution 
parameters (genotype) and the strategy 
parameter (σ). This allows ES to self-adapt the 
degree of change throughout the evolutionary 
process. 

ES can also use recombination, but it is not 
the main factor as it is in GA. Recombination may 
occur between individuals to create a new 
individual by combining solution parameters 
(genotypes) from two or more parents (Beyer & 
Arnold, 2001). 

Selection in ES is similar to that in GA, but it 
uses two main types: 

- (μ + λ) selection: In this strategy, both the 
current generation (μ individuals) and the 
offspring (λ individuals) compete for a place in the 
next generation. This helps retain some of the 
better traits from the previous generation. 

- (μ, λ) selection: In this strategy, only the λ 
offspring are evaluated, and the current 
generation is completely replaced. This is a more 

aggressive evolutionary strategy, enabling 
broader exploration of the search space. 

In the next step, ES self-adjusts its strategy 
parameters, such as the mutation standard 
deviation (σ), which is a defining feature of ES. 
This enables the algorithm to adapt to the search 
space and gradually improve optimization as it 
progresses through generations. 

The structure of the Evolution Strategies 
algorithm involves five basic steps: 

1. Initialization: ES generates an initial 
random population of μ individuals, each with 
solution parameters and strategy parameters. 

2. Mutation: ES mutates the individuals by 
adding a random value from a normal distribution 
to the parameters. 

3. Recombination (optional): ES performs 
recombination between individuals to create new 
individuals. 

4. Evaluation: ES calculates the objective 
function for the newly created individuals. 

5. Selection: ES selects the best individuals 
from both the current and new generations to 
advance to the next generation (in the μ + λ or μ, λ 
strategy). 

ES is commonly used for continuous 
optimization problems where the parameters to 
be optimized are represented as real numbers, 
such as the problem of predicting flyrock distance 
in blasting operations, which is addressed in this 
study. ES combines flexible exploration of the 
search space (through mutation and self-
adaptation) with the ability to exploit the best 
individuals (through selection). This makes it a 
powerful tool for optimizing complex problems 
and is widely used in various engineering and 
scientific fields. 

2.3. Optimizing ANN using optimization 
algorithms based on Evolutionary Strategies 
(EP-ANN and ES-ANN) 

This paper employs the Multi-Layer 
Perceptron (MLP) artificial neural network as the 
primary model for predicting flyrock distance 
caused by blasting in open-pit mines. The 
essential components of the MLP model include 
input parameters, the network structure, and 
output parameters (flyrock distance). 

In an MLP network, neurons are organized 
into multiple layers and interconnected by 
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weighted links. The goal of training is to optimize 
these weights to improve the network’s ability to 
accurately predict flyrock distance. In this study, 
evolutionary strategies are used to optimize the 
weights of the MLP. Unlike traditional 
backpropagation, which relies on gradient-based 
methods, evolutionary strategies apply a 
generalized search and optimization process 
based on the rules of each algorithm. Instead of 
adjusting weights using derivatives and gradients, 
metaheuristic algorithms perform a guided 
random search (heuristic) for the optimal 
weights, following the principles outlined earlier. 
This method offers an alternative to 
backpropagation, helping to avoid issues like 
getting trapped in local minima, which can affect 
gradient-based training methods. 

To apply this process, the MLP network 
structure must be defined before it can be used to 
predict flyrock distance. The EP and ES 
optimization algorithms then generate 
populations of solutions. Each individual in the 
search space represents a set of weights and 
biases in the MLP network. These metaheuristic 
algorithms typically begin by randomly 
initializing a population of individuals, each with 
different weight sets. These weights are 
integrated into the MLP, and errors are calculated 
based on output results using loss functions such 

as RMSE or MSE. The forward propagation 
process is used to compute the MLP's predictions 
with the weights from each individual. The error 
between the predicted and actual values is then 
calculated, which feeds into the fitness function. 
Metaheuristic operators, such as selection, 
crossover, and mutation, are applied to optimize 
the weight sets according to the optimization 
principles of each algorithm. 

After each optimization cycle, the individuals 
in the population are updated based on the results 
of the EP and ES metaheuristic operators. The 
better-performing individuals are prioritized, 
allowing the population to evolve toward 
improved solutions. This iterative process 
continues until a stopping condition is met, such 
as reaching the maximum number of iterations or 
when no further improvement in the fitness 
function is observed (convergence). 

Once optimization is complete, the individual 
with the best fitness (optimal weight set) is 
selected as the final result for the MLP network. 
This weight set is then used in the MLP for future 
predictions of flyrock distance from blasting. 
These models are referred to as the hybrid EP-
ANN and ES-ANN models in this study. The 
workflow framework for these hybrid models is 
shown in Figure 3.

Figure 3. Proposing the ES-ANN and EP-ANN framework for predicting flyrock distance induced by 
mine blasting. 
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3. Case study 

In this study, the Ta Phoi copper mine was 
selected as the case study, with data collected 
from 204 blasts and their corresponding blast 
designs. It's important to clarify that this case 
study is focused on analyzing the behavior of 
flyrock generated by blasting and evaluating the 
potential to predict flyrock distances using 
machine learning models. This site is not linked to 
mines that have caused environmental harm, as 
depicted in Figure 1. The data gathered from the 
mine's blast designs include key parameters such 
as the maximum explosive charge per delay (Q), 
burden (W), stemming (Lb), and specific charge 
(q), which are analyzed in Figure 4. It should be 
noted that the selection of these input variables is 
based on their well-documented influence on 
flyrock distance in blasting operations, as 
supported by both empirical studies and practical 
observations in open-pit mining. In which, Q 
impacts the energy released in each blast, which 
can significantly influence the throw of rock 
fragments. Studies (Raina & Murthy, 2016; Van 
der Walt & Spiteri, 2020; Chen et al., 2024) have 
shown that a higher explosive charge correlates 
with increased flyrock distance, making it a 
critical factor in predicting flyrock behavior. W 
affects confinement, which in turn determines the 
energy available for rock breakage versus flyrock 
projection. Adequate burden helps manage 
flyrock distance, as an improper burden can lead 
to excessive projection of rock fragments 

(Sawmliana et al., 2020; Nayak et al., 2022; Raina 
& Bhatawdekar, 2022). Lb is essential for 
controlling flyrock by containing the blast energy 
within the borehole. Its effectiveness in absorbing 
and controlling explosive energy directly impacts 
flyrock throw, as evidenced in previous studies 
(Purba, 1992; Armstrong, 1994; Liddell, 2021). 
Inadequate stemming length often results in 
excessive flyrock distances. Finally, q is a measure 
of the energy applied per unit volume of rock, 
affecting the efficiency and extent of 
fragmentation. Variations in specific charge 
influence the distribution of energy between rock 
breakage and flyrock generation, making it an 
essential predictor for flyrock distance (cite 
studies on specific charge in blasting). 

Given these factors, the chosen variables are 
instrumental in controlling and predicting flyrock 
distances, aligning with both theoretical and 
practical findings in blasting operations at open-
pit mines. 

Figure 4a presents the histogram analysis of 
the dataset, providing insights into the 
distribution shape of the input and output 
variables, central tendency, spread, outliers, 
anomalies, and variability. The results indicate 
that the variables exhibit non-normal and skewed 
distributions with a wide range of spread. 

Figure 4b illustrates the pairwise 
relationships between variables, highlighting 
their distributions and enabling the visual 
identification of linear or non-linear correlations. 
This visualization also captures interactions 
among multiple variables. Observing Figure 4b, 

4a 



22 Hoang Nguyen et al./Journal of Mining and Earth Sciences 66 (2), 15 - 28  

the distribution of blasting parameters and their 
relationships is evident, reflecting characteristics 
of the study area, such as rock hardness, cracks, 
and the presence of underground water. 

Figure 4c analyzes the correlations among 
input variables to determine the presence of 
strong relationships. If strong correlations exist, 
removing one of the correlated variables is 
recommended to maintain model quality during 
training. In this study, the correlations among 
input variables are weak, suggesting that all 
variables should be retained for predicting flyrock 
distance. 

To determine the flyrock distance from 
blasting events, unmanned aerial vehicles (UAVs) 
were used in this study in combination with 
specialized flyrock behavior analysis software, 
ProAnalyst. The UAV was configured to fly in 
areas with wide visibility, ensuring sufficient 
resolution to detect the flyrock fragments. Before 
setting up the flight zone for the UAV, a reference 
object of known size (a ball) was placed on the 
blast site to serve as a size standard and to 
calibrate the flyrock distance in the ProAnalyst 
software. Figure 5 illustrates the process of 
collecting flyrock data and analyzing the flyrock 
distance using UAV data.

Figure 4. Data analysis of the collected blasting dataset at the Ta Phoi open-pit copper mine. 
(a) Histogram plot; (b) Scatter plot; (c) Correlation heatmap plot 

4b 

4c 
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4. Results and discussion 

To predict flyrock distance from blasting at 
the Ta Phoi copper mine, a dataset of 204 blast 
events was randomly divided into two parts: 80% 
for training the model and 20% for testing its 
performance after training. A 5-fold cross-
validation method was employed to validate the 
machine learning model, utilizing different data 
segments for training and testing to prevent 
overfitting. 

The framework outlined in Figure 3 was 
applied to develop the prediction model for 
flyrock distance at the Ta Phoi copper mine. The 
main model used for prediction was an ANN, 
specifically a Multi-Layer Perceptron (MLP), with 
optimization algorithms applied to fine-tune the 
network’s weights. The ANN structure was 
predefined before weight optimization began. A 
simple architecture with one hidden layer 
containing five neurons was employed for this 
task, using the ReLU activation function. The 
Mean Squared Error (MSE) was used as the 
objective function in this ANN model. 

In addition to designing the ANN 
architecture, appropriate optimization 
parameters were selected to ensure the 
algorithms performed at their best. In this study, 
the EP optimization algorithm used a parameter 
called "bout_size," which determines the 
percentage of offspring agents involved in 
tournament selection, allowing for the evolution 
of better individuals. Here, bout_size was set to 
0.05, meaning that 5% of the offspring 
participated in the selection process. For the ES 
algorithm, the parameter "lambda" was used to 
define the percentage of offspring agents that 
would evolve into the next generation. In this case, 
lambda was set to 0.75, meaning 75% of the 
offspring were selected to evolve into the next 
generation. The optimization process for both 
algorithms was conducted with an initial 
population of 100 and iterated over 1000 epochs. 
The results of the optimization for the EP-ANN 
and ES-ANN models are shown in Figure 6. 

For the standalone ANN model, the stochastic 
gradient descent (SGD) algorithm was applied to 
train the ANN model with the learning rate was 

Figure 5. Collecting flyrock data and analyzing the flyrock distance using UAV data. 
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selected automatically. The training performance 
of the ANN model is shown in Figure 6. 

The optimization results in Figure 6 
demonstrate that the ES-ANN model achieved a 
much more effective optimization process 
compared to the EP-ANN model, with the MSE 
error of the ES-ANN model being significantly 
lower. Additionally, the gap between the training 
and testing errors in the ES-ANN model suggests 
superior performance over the EP-ANN model. 
While the EP-ANN model appears to converge 
earlier, its optimization performance is not as 

strong as that of the ES-ANN model. To further 
assess the accuracy of both models in predicting 
flyrock distance at the Ta Phoi copper mine, a test 
dataset comprising 41 blasts was used to evaluate 
their performance. 

The results in Figure 7 showed that both the 
training and testing loss of the standalone ANN 
model decreased over iterations, indicating 
learning and convergence. The losses stabilize 
after approximately 800 iterations, suggesting 
sufficient training. The training and testing loss 
appear close at convergence, which implies the 

Figure 6. Optimization results of the EP-ANN and ES-ANN models for predicting flyrock distance at the 
Ta Phoi copper mine. (a) ES-ANN model; (b) EP-ANN model. 

Figure 7. Training performance of the standalone model for predicting flyrock distance at the 
 Ta Phoi copper mine. 

(a) (b) 
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model generalizes well and is not overfitting. 
Overall, the model demonstrates effective 
learning and a good balance between training and 
testing performance. The prediction results of 
these models are displayed in Figure 8. 

The predicted flyrock distances generated by 
the EP-ANN and ES-ANN models for the Ta Phoi 
copper mine on the test dataset, as shown in 
Figure 8, revealed that the ES-ANN model's 
predictions are closer to the actual flyrock 
distances compared to the EP-ANN and ANN 
models. This suggests that the ES-ANN model 
delivers more accurate predictions for flyrock 
distance at the Ta Phoi copper mine. Although 
both the EP-ANN and ES-ANN models were 
optimized, the evolutionary strategy used in the 
ES-ANN model appears to be more robust and 
better suited for predicting flyrock distances in 
this case than the EP-ANN model. Figure 9 
presents the regression charts comparing the 
prediction accuracy of the three models in this 
study. 

The results in Figure 9 show that the 
regression line of the ES-ANN model (green) 
tends to be closer to the actual regression line 
(black). In contrast, the regression line of the EP-
ANN model (red) is relatively farther from the 
actual regression line, and remarkably, the 
regression line of the ANN model (purple) is 
fathest from the actual regression. These analyses 
further suggest that the EP and ES optimization 

algorithms contributed significantly in improving 
the accuracy of the ANN model for predicting 
flyrock distance in this study, and the ES-ANN 
model appears to be more suitable for predicting 
flyrock distance from blasting at the Ta Phoi 
copper mine compared to the EP-ANN and ANN 
models. To confirm these findings, this study 
calculated additional performance metrics such 
as Mean Absolute Error (MAE), Root Mean Square 
Error (RMSE), and the coefficient of 
determination (R²) to quantify the accuracy of the 
models. The computed results are presented in 
Table 1. 

 
 
 

Model 
Training dataset Testing dataset 

MAE RMSE R2 MAE RMSE R2 

ES-ANN 2.757 4.037 0.935 2.095 2.711 0.952 

EP-ANN 5.871 8.064 0.742 5.512 6.692 0.708 

ANN 8.322 10.957 0.524 7.300 8.938 0.479 

 
The results in Table 1 demonstrated that the 

ES-ANN model delivers significantly higher 
accuracy than the remaining models in predicting 
flyrock distance at the Ta Phoi copper mine, 
across both the training and testing datasets. The 
ES-ANN model's MAE on the training dataset is 
just 2.757 meters, while the EP-ANN model shows 
a much higher MAE of 5.781 meters, and the ANN 

Table 1. Performance of flyrock distance 
prediction models for the Ta Phoi copper mine. 

Figure 8. Comparison of accuracy between actual 
values and predicted values by flyrock distance 

prediction models. 

Figure 9. Regression plot comparing the 
performance of the models based on actual values 
and predicted values from the developed models. 
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model shows the highest MAE of 8.322. Similarly, 
the RMSE for the ES-ANN model on the training 
data is only 4.037 meters, compared to 8.064 
meters for the EP-ANN model and 10.957 meters 
for the standalone ANN model. Moreover, the ES-
ANN model achieved a higher coefficient of 
determination (R²) of 0.935 on the training 
dataset, whereas the EP-ANN model only reached 
R² = 0.742, and the standalone ANN model 
reached 0.524. The results demonstrated that the 
optimization algorithms (i.e., EP and ES) 
significantly enhanced the accuracy of the 
standalone ANN model in predicting flyrock 
distance. These patterns were also observed in 
the testing dataset, confirming that the ES-ANN 
model is the more accurate choice for predicting 
flyrock distance at the Ta Phoi copper mine, with 
an accuracy of approximately 95% in practice. 
The ES proves to be the most suitable 
optimization method for this specific case. 

5. Conclusion 

Predicting flyrock distance during blasting 
presents a significant challenge for open-pit 
mines, particularly those in mountainous regions, 
due to the need to manage the associated risks. 
This study marks the first domestic effort to apply 
AI in predicting flyrock distance, demonstrating 
significantly improved accuracy compared to 
traditional empirical methods. Three prediction 
models based on ANN and optimized using the EP 
and ES algorithms were successfully developed 
and tested at the Ta Phoi copper mine. The 
findings show that the ES-ANN model achieved 
superior accuracy, around 95%, compared to the 
EP-ANN model and standalone ANN model. While 
the ES-ANN model holds potential for practical 
application, further research is necessary to 
confirm its accuracy in other regions. This study 
provides a solid foundation for the future 
development of AI-based models for predicting 
flyrock distance during blasting operations in 
open-pit mines across Vietnam. 
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